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ABSTRACT

In recent years, deep-learning-based approaches have been in-
troduced to solving time-series forecasting-related problems.
These novel methods have demonstrated impressive perfor-
mance in univariate and low-dimensional multivariate time-
series forecasting tasks. However, when these novel meth-
ods are used to handle high-dimensional multivariate fore-
casting problems, their performance is highly restricted by a
practical training time and a reasonable GPU memory con-
figuration. In this paper, inspired by a change of basis in
the Hilbert space, we propose a flexible data feature extrac-
tion technique that excels in high-dimensional multivariate
forecasting tasks. Our approach was originally developed
for the National Science Foundation (NSF) Algorithms for
Threat Detection (ATD) 2022 Challenge. Implemented using
the attention mechanism and Convolutional Neural Networks
(CNN) architecture, our method demonstrates great perfor-
mance and compatibility. Our models trained on the GDELT
Dataset finished 1st and 2nd places in the ATD sprint series.

Index Terms— time-series forecasting, high-dimensional
data, CNN, short-sequence, attention

1. INTRODUCTION

With data of all types becoming more and more abundant,
real-time time series forecasting is taking on a more impor-
tant role than ever in decision-making throughout many as-
pects of various domains, such as public health and safety[1],
energy[2], transportation[3], and business[4]. Recently, due
to the rapid rise in complexity and size of time series data,
a wide variety of machine learning models have been ex-
plored in forecasting time series. The methods include,
but are not limited to, Temporal Convolutional Neural Net-
work (TCNN), Gated Recurrent Unit (GRU), Long Short-
Term Memory (LSTM), Elman Recurrent Neural Network
(ERNN), and Multilayer Perceptron (MLP)[5]. These mod-
els generally work well with low dimensional data with a
high number of observations yet still suffer from numer-
ous problems[5]. Particularly, the performance of the models
across different datasets has a large variance. Notably, current

top performers like LSTM and GRU suffer from extremely
high training and inference times compared to their counter-
parts. Existing CNN-based models like TCNN take the lead
in their efficiency, but their performance drops drastically
when handling data with high dimensionality. The trade-offs
mentioned above lead us to rethink these approaches.

High-dimensional multivariate datasets undoubtedly pose
challenges to existing forecasting models. However, they
provide additional information that we can exploit. Unlike
particles in an ideal gas, most events in the real world are not
independent. Thus, we make the assumption that there exist
underlying interactions between different events occurring
at different locations and times. By this assumption, captur-
ing the spatio-temporal relationships between the historical
observations of the time series could help us interpret and
forecast the states of future time frames, which are stochastic
in nature. In this paper, we propose a novel strategy for fea-
ture extraction and neural network architecture design. Our
strategy consists of three components–data pre-processing
using structural decomposition, attention-based encoder, and
convolution-based signal transform. Each component is laid
out in detail in the Methodology Section.

The goal of this research work is aligned with the ATD-
2022 Challenge and its sponsors, NSF and National Geospatial-
Intelligence Agency (NGA). We aim to develop efficient algo-
rithms that makes accurate predictions for high-dimensional
time series data using limited historical observations which
can be used in supporting public health and safety.

2. PROBLEM FORMULATION

The original problem that our model aimed to solve is pro-
posed by the NSF ATD 2022 Challenge. Participants of the
challenge are given a dataset derived from the GDELT project
dataset. The GDELT project monitors print, broadcasts, and
web media to record events across the globe and attribute
them to state actors using the Conflict and Mediation Event
Observations (CAMEO) coding system. In the CAMEO cod-
ing system, events are categorized into 20 distinct types ac-
cording to their severity and rarity, ranging from “Making



Public Statements” to “Engage In Unconventional Mass Vio-
lence.” For example, on one side of the spectrum, events like
“Making Public Statements” could be happening at every mo-
ment around the world, which means that we have abundantly
available past observations for these types of events. How-
ever, rare and catastrophic events, such as “Engage In Un-
conventional Mass Violence,” would have very limited avail-
able past observations. Organizers of ATD 2022 processed
the raw GDELT data into a weekly-aggregated, geographic-
region-level view.

The resulting dataset consists of the counts of the 20
CAMEO event types for 260 geographic regions across a
215-week window, which is a 215 by 5,200 table. The task
is to use available past observations to forecast the next four
states of the world in the future 4-week horizon. Namely, time
series observations T0,...,k are given, where each Tn ∈ N5,200

represents the state of the world at time n. Participants must
produce a forecast function

f : T0,...,k → Tk+1,...,k+4

where Tk+1,...,k+4 are the next four vectors representing fu-
ture states of the world.

The backtesting procedure of ATD 2022 uses an expand-
ing window starting with 100 weeks of past observations as
the training set. The window expands for one observation
at a time until the window exhausts the entire dataset. The
consecutive 4 weeks of observations following the expanding
window are then used as the testing set to evaluate the model
performance.

3. METHODOLOGY

3.1. Data Preprocessing: Structural Decomposition

In our context, it is safe to assume that a sequence of numbers,
such as a time series dataset, often represents interpretable
measurements from the real world. Given this assumption, we
propose that for any high-dimensional longitudinal dataset,
we consider the key structural dimensions and arrange the
data set accordingly, which can help deep-learning mod-
els converge faster. For example, we can decompose the
ATD version of the GDELT Dataset into three major dimen-
sions–Time, Event types, and Region. As illustrated in figure
1, we obtained a cuboid-shaped data block using the pro-
posed approach, where each dimension corresponds to time,
event categories, and space, respectively. In other words,
every cross-section of the cuboid in the spatial dimension is a
separate panel data of time and event types.

3.2. Attention-based encoder

In many situations, we do not necessarily have prior knowl-
edge about the relationships between different time series
in our dataset. Inspired by the success of attention-based

structures in natural language processing, we included the
attention-based encoder in our model. We aim to use this
encoding layer as an additional effort to capture potential
connections across the different time series. In our case, as
shown in Figure 2, we applied an attention-based encoder
throughout the entire spatial dimension to emphasize under-
lying associations across different geographic locations. The
encoder layer is the same as the structure proposed in the
original paper [6].

Figure 1: The proposed method for data preprocessing–
Structural Decomposition. The input dataset is decomposed
into two cuboid-shaped data blocks consisting of layers of
panel data. In the ATD Dataset the panels are “Time” vs.
“Regions” and “Time” vs. “Event types.” Note that different
datasets can be decomposed differently according to the Key
Dimensions.

3.3. Convolution-based signal transform

Signal transform techniques like the Fourier transform are
very commonly used in signal processing. It is capable of
revealing essential characteristics of a signal by approximat-
ing the signal as a linear combination of its basis frequencies.
Previous research suggests that the use of a windowed Fourier
transform enables a better interpretation of the randomness in
a given signal [7]. Notice that when the input signal is pro-
jected into an arbitrary Hilbert space, the Fourier transform
operation can be interpreted as a change of basis. For exam-
ple, suppose that the input signal F is in time domain t; we can
write the following to express a windowed Fourier transform,

F = ⟨f⃗ , eiωt⟩ =
∫ ∞

−∞
f(t)g(t− s)eiωt dt

where f is the input signal, g is a window function, and eiωt is
the family of trigonometric functions serving as the orthonor-
mal basis in the Hilbert space.

To expand on this idea, we need to produce a transforma-
tion that can decompose our panel of time series into a set
of basis, which we can use as features to make combinations
and generate predictions. In our case, every cross-section of



the reshaped cuboid data block is a 2-D panel. For instance,
if we take a slice of the spatial dimension, we will obtain a
time versus event type panel. Inspired by the work in [8],
image representation using 2-D Gabor Wavelets, we realized
that applying the concept mentioned above on this slice of
data can be implemented efficiently using a 2-D convolution.
i.e.,

Fn(t, s) =
∑
x

∑
y

f(x, y)kn(t− x, s− y)

where kn ∈ K is nth kernel of the set of kernels (basis) to be
learned in the training process. As shown in figure 2, these
extracted features are fused through an MLP layer to generate
predictions.

Figure 2: An overview of the proposed architectural design

3.4. Optional Model Ensemble Layer

During the model development process, we noticed that sta-
tistical models like ARIMA models tend to have a higher
bias, making them better at following the general trend in the
time series data. However, machine learning-based models
are more likely to have a higher variance, especially when
given limited observations as in our case. As a result, machine
learning-based methods are better at predicting localized and
drastic changes in the data. Depending on the specific dataset
in consideration, we propose an optional layer that performs a
weighted sum of our model predictions and additional statis-
tical model predictions to balance the bias-variance tradeoff
problems. In our case, we ensemble our model predictions
with predictions from an additional Vector Auto-regression
model (VAR).

3.5. Metrics

Since the ATD version of the GDELT Dataset contains a to-
tal of 5,200 time series with distinct scales and the values of
some observations are zero, we need a metric invariant to the
magnitude of data points and is capable of handling zero as
truth values. Therefore, we chose Mean Absolute Scaled Er-
ror (MASE) as our primary metric. MASE is defined as the
ratio between the mean absolute error of the forecast values
and the mean absolute error of the in-sample one-step naive
forecast [9]. i.e.,

MASE =

h∑
k=1

1

h

|yt+k − ŷt+k|
(n− 1)−1

∑n
i=2 |yi − yi−1|

where h is the length of the forecasting horizon; n is the total
number of observations; ŷ is the predicted value for observa-
tion y.

Besides the accuracy of the model, we also want to
compare different model’s capabilities in avoiding making
large forecasting errors. Thus, we have also included Mean
Squared Error (MSE) as a secondary reference since MSE,
as defined in the expression below, emphasizes the large
forecasting errors.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

where n is the total number of observations; ŷ is the predicted
value for truth value y.

4. EXPERIMENTAL SETUP

4.1. Baselines for model comparisons

To assess the performance of our proposed method, we are
using three state-of-the-art deep learning models and one clas-
sic statistical model for time series forecasting as baselines.
Namely, Google AI’s Temporal Fusion Transformer (TFT)
[10], N-Beats Forecaster from Element AI [11], DeepAR
Forecaster from Amazon Research [12], and Vector Autore-
gression (VAR) Model. The three deep learning models
were implemented with GluonTS, a Python library [13], and
the VAR model was implemented using Python Statsmod-
els library [14]. The parameters for each model are chosen
carefully using grid search method around the default values
recommended by the library implementations to achieve their
best performance.

4.2. Dataset preparation and training details

The performance of our proposed model is demonstrated on
two separate datasets. 1) ATD 2022 Dataset, 2) Wikipedia
Web Traffic Dataset. Dataset 1 was given to participants for
model development. The details of our proposed Structural



ATD Data Wikipedia Data
Model Names MASE MSE MASE MSE

CS-Net 1 1.126 73.90 0.773 785.47
CS-Net 2 1.032 61.08 0.731 736.19
CS-Net 3 1.015 60.50 0.694 718.19
DeepAR 1.136 74.04 0.955 964.64

TFT 1.078 63.43 0.752 748.01
VAR 1.193 68.19 0.977 973.69

N-Beats 1.112 73.43 0.748 746.44

Table 1. Performance of different models on two datasets
using MASE and MSE as metrics

Decomposition procedure on Dataset 1 are already described
in the previous sections, which we do not repeat here. Dataset
2 is obtained from a Kaggle competition [15] with the goal of
predicting future web traffic of Wikipedia web pages. The
raw dataset contains 145, 063 time series. We randomly se-
lected a subset of 1,400 distinct time series of web pages for
active keywords in multiple languages. Each of these is the
recorded daily web traffic spanning 500 days, resulting in a
500 by 1,400 table as the input. In addition, the name of each
time series also contains information regarding the language
a web page is written in, the device type users used to access
a web page, and keywords related to a web page. The key
structural dimensions that we are considering here are Time,
User Device types, Language, and Keyword categories.

For Dataset 1, all models are trained on a sliding window
of 170 observations in size to predict the next 8 observations.
Similarly, for Dataset 2, we trained the models on a sliding
input window of size equal to 300 observations to predict the
next 4 observations. Note that we choose different training
window sizes because Dataset 2 has more number of observa-
tions. In addition, our model has already demonstrated strong
performance in the ATD 2022 challenge with a forecast hori-
zon equal to 4. So we decided to test our model’s performance
over a longer forecast horizon.

5. RESULTS AND ANALYSIS

5.1. Ablation and Comparison Analysis

We made three variations of our model to quantify the effec-
tiveness of each of our proposed architectural components.
For simplicity, we named our proposed model design Cross-
Sectional-Net (CS-Net). CS-Net 1, 2, and 3 correspond to the
three variations. CS-Net 1 only has the Convolution-based
signal transform. Predictions from CS-Net 2 are a weighted
sum of CS-Net 1 outputs and predictions made by a VAR fore-
caster. Lastly, CS-Net 3 has all the components proposed in
the Methodology section, i.e., Convolution based signal trans-
form, Attention-based encoder, and Model ensemble.

According to Table 1, we see that regardless of the dataset
or metric used, the proposed Convolution-based signal trans-

form across data sections alone yield a relatively competitive
performance. Its metric scores is close to that of TFT and N-
Beats forecasters. The inclusion of a statistical model ensem-
bling further improved the proposed method’s performance,
which verified our hypothesis that variances and biases need
to be balanced. It is worth noting that even though classi-
cal statistics models like VAR do not show great performance
when used alone, they can be helpful in supporting the robust-
ness of deep learning-based predictions.

We also noticed that in the ATD Dataset, the improve-
ments from adding multi-head self-attention layer is not as
significant as in Wikipedia Traffic Dataset. This is reasonable
because ATD Dataset has less available data for training. We
observed that with limited data, models may have over-fitted
to part of time series and not have fully converged in others.
To counter this issue, we used regularization techniques, such
as dropout and adding regularization parameter in the Adam
loss function. We also expect more notable improvements
given relative more historical observations.

With all of the proposed components integrated, CS-Net
3 outperforms the other baseline models in both datasets. Par-
ticularly, it takes a strong lead in the MSE metric, indicating
that it successfully avoided making large prediction errors.

5.2. Limitations

Despite that the proposed method outperforms state-out-the-
art architectures like TFT, N-Beats and DeepAR Forecaster,
the proposed method relies on a stronger assumption on a
given dataset that it must contain some type of structure. This
assumption reduces its generalizability on different datasets.
In addition, TFT provides interpretability of variable impor-
tance, which could be useful in applications.

6. CONCLUSIONS

In this paper, we adopted a novel approach to handle high-
dimensional multivariate time series forecasting tasks with
limited availability of historical observations. The proposed
approach has shown success in the NSF ATD 2022 Challenge.
This method also outperforms other cutting-edge methods in
time series forecasting in subsequent experiments on addi-
tional datasets, confirming the effectiveness of the proposed
method. This research work can potentially be used in sup-
porting fields of public health and safety.
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